

PRESSURE-STABILIZED FINITE ELEMENT METHODS FOR VISCOELASTIC FLOW PROBLEMS

TAGAMI, Daisuke¹

¹ Institute of Mathematics for Industry,
Kyushu University, Fukuoka 8190395, JAPAN
tagami@imi.kyushu-u.ac.jp

Key words: *Viscoelastic Flow, Pressure-Stabilized Finite Element Method, Error Estimates, Contraction Flows.*

The viscoelastic flow is one of the important physical phenomena both from the theoretical and from the practical points of view. Blood flows in the human body and plastic flows during the injection molding are typical examples of the viscoelastic flow; for more examples and details, see Larson [3], Öttinger [5], and their references. Therefore, there encounter many researches on the numerical analysis and simulation of viscoelastic flows; see, for example, Bonito–Clement–Picasso [1], Owens–Phillips [6], and their references.

In order to enhance the mathematical justification of numerical methods for viscoelastic flows, we establish error estimates of a pressure-stabilized finite element method for ones. Moreover, we show some numerical examples of contraction flows, and compare numerical results with experimental ones among some viscoelastic models; the Oldroyd-B model [4], the Giesekus model [2], and the PTT model [7].

Figure 1 shows an example of the comparisons; the stream lines of the 4 to 1 contraction flow among the Stokes, the Oldroyd-B, the Giesekus, and the PTT models.

REFERENCES

- [1] BONITO, A., CLÉMENT, P., AND PICASSO, M.: *Viscoelastic flows with complex free surfaces: numerical analysis and simulation*, In Ciarlet, P.-H. (Ed.), Numerical Methods for Non-Newtonian Fluids, Vol.16, 2011, Amsterdam, Elsevier/North Holland.
- [2] GIESEKUS, H.: *A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility*, J. Non-Newton. Fluid Mech., **11** (1982), pp.69–109.

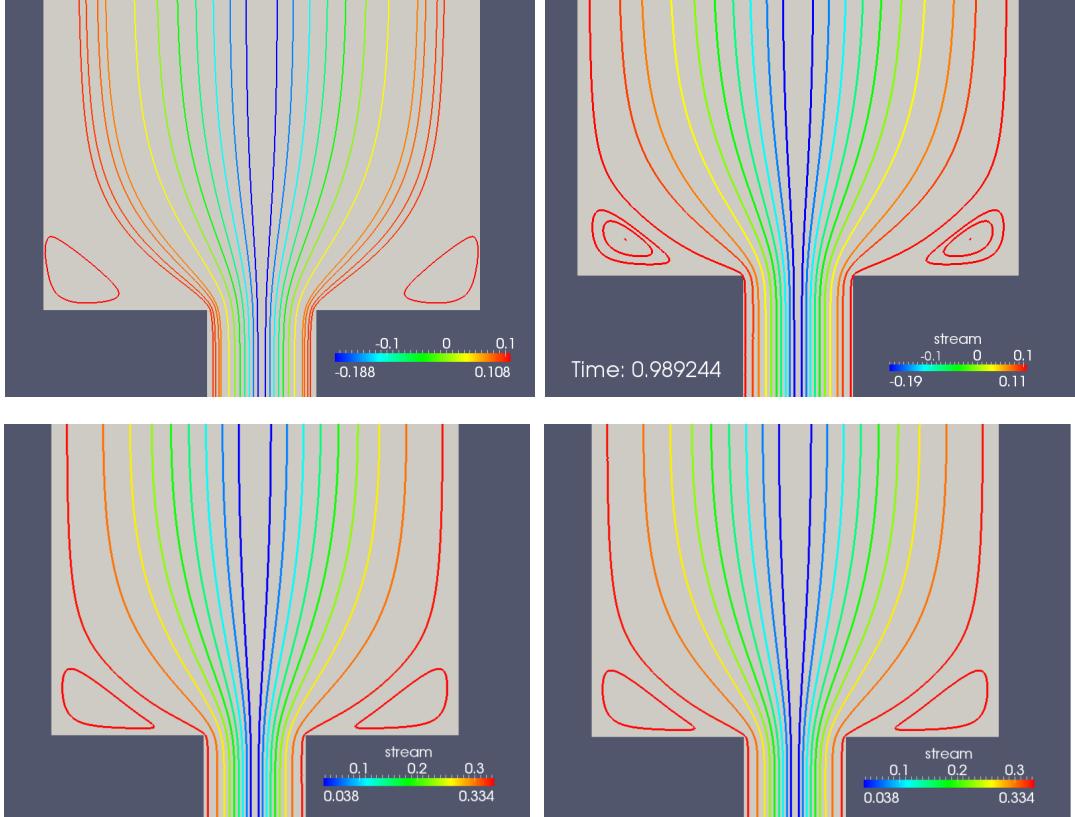


Figure 1: Stream lines of the 4 to 1 contraction flow (Above-Left: the Stokes model; Above-Right: the Oldroyd-B model; Below-Left: the Gieskens model; and Below-Right: the PTT model).

- [3] LARSON, R.G.: *The Structure and Rheology of Complex Fluids*, Oxford University Press, 1999.
- [4] OLDROYD, J.G.: *On the Formulation of Rheological Equation of State*, Proc. Roy. Soc., **A200** (1950), pp.523–541.
- [5] ÖTTINGER, H.-C.: *Stochastic processes in polymeric fluids*, Springer-Verlag, 1996.
- [6] OWENS, R.G. AND PHILLIPS, T.N.: *Computational Rheology*, Imperial College Press, 2005.
- [7] THIEN, N.P. AND TANNER, R.I.: *A new constitutive equation derived from network theory*, J. Non-Newton. Fluid Mech., **2** (1977), pp.353–365.